目次(まとめ)

◾️ 指数型分布族は一様最強力検定につながる

◾️ 尤度関数を変形して、最強力検定になる統計量を見つける

◾️ 参考文献


こんにちは、みっちゃんです。

今回の記事では、2012年に行われた統計検定1級の統計数理の問題(問4)を取り上げて、解答を得るための方針について解説します(問題の詳細については、参考文献などをご覧ください)。

この問題では、平均 \mu、分散1の正規母集団から n 個の標本をランダムに取り出したときの標本平均 {\overline x} について、信頼区間などを考えています。

指数型分布族は一様最強力検定につながる

指数型分布族とは、正規分布(こちら)やガンマ分布(こちら)、2項分布(こちら)、ポアソン分布(こちら)、負の2項分布(こちら)のように、確率(密度)関数が、以下のような形で表現されるような確率分布です。
f(x | \theta) = h(x)~ {\rm exp}\{\theta T(x) - c(\theta)\}
ここで、x は標本、\theta は母集団のパラメータ、h(x)T(x) は標本の情報を用いて得られる定数、c(\theta) はパラメータの情報を用いて得られる定数です。

ここで、T(x) を標本 x を用いて得られた統計量とすると、この T(x) に基づく検定が(一様)最強力検定になります(最強力検定についてはこちらの記事をご参照ください)。

尤度関数を変形して、最強力検定になる統計量を見つける

以前の記事で紹介したように、尤度比に基づく検定が最強力検定になることがわかっているので、ここでは尤度比検定を考えます。

そのために、尤度関数 \lambda(\mu) を考えます。

いま母集団が、平均 \mu、分散1の正規分布にしたがっているので、n 個の標本を取り出して、同時確率密度関数を求めて、尤度関数にします。
\begin{eqnarray}\lambda(\mu) &=& \prod_{i = 1}^n \frac{1}{\sqrt{2\pi}} {\rm exp}\{-\frac{(x_i - \mu)^2}{2}\}\\&=&(\frac{1}{\sqrt{2\pi}})^n \prod_{i = 1}^n {\rm exp}\{-\frac{(x_i - \mu)^2}{2}\}\\&=&(\frac{1}{\sqrt{2\pi}})^n {\rm exp} \{\sum_{i = 1}^n {-\frac{(x_i - \mu)^2}{2}}\}\\&=&(\frac{1}{\sqrt{2\pi}})^n {\rm exp} \{\sum_{i = 1}^n \{-\frac{x_i^2}{2} + \mu x_i - \frac{\mu^2}{2}\}\}\\&=& (\frac{1}{\sqrt{2\pi}})^n {\rm exp} \{\sum_{i = 1}^n \{-\frac{x_i^2}{2}\}\} {\rm exp} \{\sum_{i = 1}^n \{\mu x_i - \frac{\mu^2}{2}\}\}\\&=&(\frac{1}{\sqrt{2\pi}})^n {\rm exp} \{\sum_{i = 1}^n \{-\frac{x_i^2}{2}\}\} {\rm exp} \{n \mu \frac{1}{n}\sum_{i = 1}^n x_i - \frac{n \mu^2}{2}\}\end{eqnarray}
ここで、
\begin{eqnarray}h(x) &=& (\frac{1}{\sqrt{2\pi}})^n {\rm exp} \{\sum_{i = 1}^n \{-\frac{x_i^2}{2}\}\}T(x) \\&=& \frac{1}{n}\sum_{i = 1}^n x_ic(\theta) \\&=& \frac{n \mu}{2}\end{eqnarray}
と考えると、統計量 T(x)、つまり、標本の平均値をつかった統計が、最強力検定になることがわかります。

参考文献

- 日本統計学会「統計検定1級 公式問題集」実務教育出版
- 久保川達也「現代数理統計学の基礎」共立出版